
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Abstract Syntax Tree

© 2023 Arthur Hoskey. All
rights reserved.

Abstract Syntax Tree

 An abstract syntax tree (AST) is an intermediate
representation of the program.

 An AST leaves out details that would appear in a normal
parse tree created by a grammar (this is where the term
abstract comes from).

 A parse tree created by a grammar would have nodes
corresponding to all nonterminals used in substitutions that
were applied during parsing (an AST would not).

© 2023 Arthur Hoskey. All
rights reserved.

Generating the AST

 The parser is responsible for generating the abstract syntax
tree.

 As the program is being parsed it builds the AST.

 If parsing is successful, the parser produces an AST as its
output.

© 2023 Arthur Hoskey. All
rights reserved.

ParserStream of

Tokens

(from

scanner)

=

x +

w *

y z

Abstract Syntax Tree

(Intermediate Representation

Generating the AST

 AST for x=w+y*z:

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

w *

y z

Abstract Syntax Tree

(Intermediate Representation

Interior nodes are for

operators in the AST

=, +, * are the

operators in this

example

Leaf nodes are for

variables (and integer

literals) in the AST

w,x,y,z are the variables

in this example

AST Operator Node

 The children of an operator node are its operands.

 For example, the + operator has two operands, so it has
two children.

© 2023 Arthur Hoskey. All
rights reserved.

x an y are children of

+ because they are its

operands

Operator Node (+)

x

+

y

AST and Parse Tree Example

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the parse tree for the following: x (x is just one id)

© 2023 Arthur Hoskey. All
rights reserved.

AST and Parse Tree Example

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the abstract syntax tree for the following: x (x is just one id)

© 2023 Arthur Hoskey. All
rights reserved.

F

x

E

E'

ε

Parse Tree

AST and Parse Tree Example

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the abstract syntax tree for the following: x (x is just one id)

© 2023 Arthur Hoskey. All
rights reserved.

F

x

E

E'

ε

Parse Tree

x

Abstract Syntax Tree

In contrast to the parse tree,

the AST does not contain

nodes for all nonterminals.

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the parse tree for the following: x + y

© 2023 Arthur Hoskey. All
rights reserved.

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the abstract syntax tree for the following: x + y

© 2023 Arthur Hoskey. All
rights reserved.

F

+x

E

E'

F E'

εy

Parse Tree

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

Parse tree and abstract syntax tree for: x + y

© 2023 Arthur Hoskey. All
rights reserved.

F

+x

E

E'

F E'

εy

Parse Tree

x

+

y

Abstract Syntax Tree

Interior nodes are for

operators in the AST

Most of the nodes

from the parse tree do

not appear in the AST

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the parse tree for the following: x + y + z

© 2023 Arthur Hoskey. All
rights reserved.

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

What is the abstract syntax tree for the following: x + y + z

© 2023 Arthur Hoskey. All
rights reserved.

F

+x

E

E'

F E'

ε

y

Parse Tree

+ F E'

z

Example AST Nodes

 Sample grammar for addition:
E → F E'

E' → + F E'

E' → ε

F → id

F → intliteral

Parse tree and abstract syntax tree for: x + y

© 2023 Arthur Hoskey. All
rights reserved.

F

+x

E

E'

F E'

ε

y

Parse Tree

x

+

+

Abstract Syntax Tree

+ F E'

z

y z

AST Node Classes

 Now on to AST node classes…

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Base Classes

 All nodes can be derived directly or indirectly from the following
class:

abstract class ASTBase {

}

 The expression related classes can be from the following class:

abstract class Expr extends ASTBase{

}

 The statement classes can be derived from the following class:

abstract class Stmt extends ASTBase {

}

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Id

 The id class should store the variable's name.

 An id is an expression so it should inherit from Expr.

class Id extends Expr {

 Declare String name

 Id Constructor (String name) {

 Set this.name to name

 }

}

 An id can be the only item on the right side of an assignment and
needs to be able to function like an expression. For example:

Declare int x

Declare int y

Set x to y

© 2023 Arthur Hoskey. All
rights reserved.

Y is on the right side, so it needs

to be evaluated as an expression

AST Node Sum

 What would the Sum (+) class and its AST diagram look
like?

 How many children? What are the types of the children?

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Sum

 What would the Sum (+) class and its AST diagram look
like?

 How many children? What are the types of the children?

 The + operator has two operands so it should have two
children.

 The operands are expressions.
class Sum extends Expr {

 Declare Expr lhs

 Declare Expr rhs

 Sum Constructor(Expr lhs, Expr rhs) {

 Set this.lhs to lhs

 Set this.rhs to rhs

 }

}

© 2023 Arthur Hoskey. All
rights reserved.

lhs and rhs are

children of Sum

The Sum class is

used for operator (+)

nodes in the AST

Sum

Expr Expr

Sum inherits from

Expr. Sum can be

used as an operand

for another Expr.

AST Node Assignment

 An assignment stores an expression value into a variable.

 What would the Assign class and its AST diagram look like?

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Assignment

 An assignment stores an expression value into a variable.

 What would the Assign class and its AST diagram look like?

class Assign extends Stmt {

 Declare Id id

 Declare Expr rhs

 Assign Constructor(Id id, Expr rhs) {

 Set this.id to id

 Set this.rhs to rhs

 }

}

© 2023 Arthur Hoskey. All
rights reserved.

The Assign class has

an id and expression

as children

Assign

Id Expr

Id being assigned to

Value to put in the id (rhs means

right hand side)

Assign inherits from Stmt

(an assignment is a

specific type of statement)

AST Node Collection of Statements

 A StmtCollection stores multiple statements.

 What would the StmtCollection class and its AST diagram
look like?

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Collection of Statements

 A StmtCollection stores multiple statements.

 What would the StmtCollection class and its AST diagram
look like?

class StmtCollection extends ASTBase {

 Declare List of Stmt

 Define method to add a Stmt to the list

}

© 2023 Arthur Hoskey. All
rights reserved.

The StmtCollection class has multiple

Stmt instances as children

(there is no limit to the number of children)

StmtCollection

Stmt

List of Stmt. Any class that derives

from Stmt can be added to the list

Stmt…

StmtCollection inherits from

ASTBase. It does not inherit

from Stmt or Expr. It is not a

specific type Stmt. It cannot

be an operand to an Expr.

AST Node Assignment

 Assume that an if statement only uses equals when
testing.

 Assumes that an Equals class has been defined that tests if
two expressions are equal.

 What would the AST diagram be for this if statement?

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Assignment

 Assume that an if statement only uses equals when
testing.

 Assumes that an Equals class has been defined that tests if
two expressions are equal.

 What would the AST diagram be for this if statement?

© 2023 Arthur Hoskey. All
rights reserved.

The If class needs an

equality test and a

collection of

statements to execute

If

Equals StmtCollection

Stmt Stmt…
Expr Expr

AST Node Assignment

 What would the AST diagram be for this nested if
statement?

If w = x

 If y = z

 a = b

 endif

endif

© 2023 Arthur Hoskey. All
rights reserved.

AST Node Assignment

 What would the AST diagram be for this nested if
statement?

If w = x

 If y = z

 a = b

 endif

endif

© 2023 Arthur Hoskey. All
rights reserved.

If

Equals StmtCollection

Expr Expr If

Equals StmtCollection

Expr Expr Assign

Id Expr

Generating the AST During Parsing

 Generating the AST during parsing…

© 2023 Arthur Hoskey. All
rights reserved.

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

 Assume that the following have been defined:
◦ Expr – AST node base class.

◦ Sum – AST node class that inherits from Expr. It has two children that
correspond to the operands.

 The code on the upcoming slides uses the Expr and Sum
AST node classes.

© 2023 Arthur Hoskey. All
rights reserved.

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

parse()

Declare Expr expr

Set expr to Expr()

expr() returns Expr

Declare Expr factor

Declare Expr rhsSum

Set factor to factor()

Set rhsSum to exprEnd()

If (rhsSum equals null)

 return factor

Return new Sum(factor, rhsSum)

© 2023 Arthur Hoskey. All
rights reserved.

Nonterminal methods below

return AST nodes

(descriptions of each method

on upcoming slides)

exprEnd() returns Expr
Declare Expr factor
Declare Expr rhsSum

If nextToken equals PLUS
 match(PLUS)
 Set factor to factor()
 Set rhsSum to exprEnd()
 If (rhsSum == null)
 Return factor

 Return new Sum(factor, rhsSum)

Return null

factor() returns Expr
Declare Expr expr

If nextToken equals ID
 Declare idName String
 Set idName to tokenBuffer
 match(ID)
 Set expr to new Id(name)

If nextToken equals INTLITERAL
 Declare intValue Int
 Set intValue to tokenBuffer
 match(INTLITERAL)
 Set expr to new IntLiteral(name)

Return expr

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

parse()

Declare Expr expr

Set expr to expr()

© 2023 Arthur Hoskey. All
rights reserved.

Expr is the starting

nonterminal in this grammar.

The call to expr() in parse

returns the root of the AST.

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

expr() returns Expr

Declare Expr factor

Declare Expr rhsSum

Set factor to factor()

Set rhsSum to exprEnd()

If (rhsSum equals null)

 return factor

Return new Sum(factor, rhsSum)

© 2023 Arthur Hoskey. All
rights reserved.

The factor variable holds the left side of an expression

The rhsSum variable holds the right side of an expression.

We get the right side AST node by calling exprEnd().

exprEnd may return null. If null is returned then it used the

ExprEnd → ε production

If rhsSum is null, then there is nothing to the

right of factor in this expression. If this is the

case, then just return the factor.

If we get here, then there is both a left and right side

for the expression so create a new Sum node.

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → = + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

exprEnd() returns Expr

Declare Expr factor

Declare Expr rhsSum

If nextToken equals PLUS

 match(PLUS)

 Set factor to factor()

 Set rhsSum to exprEnd()

 If (rhsSum == null)

 Return factor

 Return new Sum(factor, rhsSum)

Return null

© 2023 Arthur Hoskey. All
rights reserved.

Consume the + symbol

Recognize the factor just to the right of +

rhsSum holds the expression to the right of the factor

we just recognized. Recursively call exprEnd().

If rhsSum is null, then there is nothing to the right

of factor in this expression (just return the factor).

If we get here (outside if), then there was no + so the expression is finished.

Returning null means it is using the ExprEnd → ε production.

If we get here then there are two operands, return

a new Sum node.

Create AST for an Expression

 Tokens: ID, EQUALS, INTLITERAL, EOF

 Assume the following grammar and write the parser:

Expr → Factor ExprEnd

ExprEnd → = + Factor ExprEnd

ExprEnd → ε

Factor → id

Factor → intliteral

factor() returns Expr

Declare Expr expr

If nextToken equals ID

 Declare idName String

 Set idName to tokenBuffer

 match(ID)

 Set expr to new Id(name)

If nextToken equals INTLITERAL

 Declare intValue Int

 Set intValue to tokenBuffer

 match(INTLITERAL)

 Set expr to new IntLiteral(name)

Return expr

© 2023 Arthur Hoskey. All
rights reserved.

Get the id name for the token buffer

Consume the ID symbol

Create a new Id node with the name in the string buffer

Get the int literal from the token buffer

Consume the INTLITERAL symbol

Create a new IntLiteral node with the

value from the string buffer

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Abstract Syntax Tree
	Slide 4: Generating the AST
	Slide 5: Generating the AST
	Slide 6: AST Operator Node
	Slide 7: AST and Parse Tree Example
	Slide 8: AST and Parse Tree Example
	Slide 9: AST and Parse Tree Example
	Slide 10: Example AST Nodes
	Slide 11: Example AST Nodes
	Slide 12: Example AST Nodes
	Slide 13: Example AST Nodes
	Slide 14: Example AST Nodes
	Slide 15: Example AST Nodes
	Slide 16: AST Node Classes
	Slide 17: AST Node Base Classes
	Slide 18: AST Node Id
	Slide 19: AST Node Sum
	Slide 20: AST Node Sum
	Slide 21: AST Node Assignment
	Slide 22: AST Node Assignment
	Slide 23: AST Node Collection of Statements
	Slide 24: AST Node Collection of Statements
	Slide 25: AST Node Assignment
	Slide 26: AST Node Assignment
	Slide 27: AST Node Assignment
	Slide 28: AST Node Assignment
	Slide 29: Generating the AST During Parsing
	Slide 30: Create AST for an Expression
	Slide 31: Create AST for an Expression
	Slide 32: Create AST for an Expression
	Slide 33: Create AST for an Expression
	Slide 34: Create AST for an Expression
	Slide 35: Create AST for an Expression
	Slide 36: End of Slides

